“就是什么类型的书🌷,是四书五经这种书🏵,还是什么书都有🍞,比如算术之类的杂学🏣。”
沈清并不知道院子里发生的事🌸,还以为林茗只是随便问问🎪,于是想了想便说道🌪:
“除了四书五经诸子百家⬜,东胜史学之外👟,算术也稍有涉猎🌐,称为算学🏮,主要攻读的书籍有《九章算术注》和《海岛算经》等算学类书籍⚪。”
说到这里🎞,沈清也有些疑惑了🈸,平时不见林茗对这些东西感兴趣🍓,之前他刻意放在房间的《珠算集》⬜,林茗也好像没什么兴趣⛽,现在却特地来问🍞。
林茗可不知道沈清已经有些猜测➰,她听到还真的有这方面的书籍🐋,便眼前一亮问道♑:
“那这两本书你那里有没有?”
沈清点了点头♓,就见林茗眼中精光大胜道🐷:
“那你能不能找来给我看一下?”
沈清有些意外🎺,林茗竟然提出想要看看这些书🆎,按理说🐻,这些书虽然名声不显👏,但难度却不一般👫,因为不在笔试范围之内🏺,所以寻常人基本上不会太过关注这类书籍⛵。
想到这里⚓,沈清便故意解释道🉑:
“这两本太难了🏤,我有一本比较简单的珠算集🏧,你看着应该可以理解🏙。”
林茗却不乐意了👀,只见她面上带着虚伪的笑容道🍡:
“那你就给我看看有多难不成吗?这样我也好知难而退🈸。”
说完🎵,又装出一副可怜相道🐿:
“平日里在家中✳,我也无甚乐趣🎁,问你要这书也只是为了打发打发时间🎀。”
沈清见此只好无奈地站起身子道✔:
“好🎷,这就给你找🐡。”
说完便转身向旁边的书柜仔细翻找起来🌹,不一会🌖,便从柜子里翻出了基本关于算学的书👆。
也不多🌃,一共五六本🐯,沈清挑拣了一下🍼,将林茗指明要的两本较难的书和两本比较简单的书✈,一道递给了林茗🎽。
林茗看着这几本书👎,顿时犹如痴汉看到美女🎍,一下子便拿到手上🌅,分别看了看书封上的书名🍚。
见沈清刚才说的那两本都在里面👡,林茗便没耽误时间🐀,直接往书房上的软榻一坐🌴,拿起《九章算术注》就看了起来⏬。
沈清见林茗拿到书就自顾自地看了起来🐎,有些意外🎪。
林茗却没关注沈清什么看法🌝,缓慢翻动起了书中的纸张🍬。
沈清看着书🍂,一开始林茗翻书翻得比较慢🎧,但到了后面她竟然越翻越快起来👁,这让沈清又有了些惊诧🎷。
毕竟那本书里的内容⛽,就连他看地也不是十分轻松➿,有些难的地方也是一知半解✅。
虽说后来全部理解了❌,可最先看到的时候🌚,却没有林茗这么快的速度➕。
沈清不由猜想林茗是否见比较难🈹,所以没了看的心思🎡。
于是沈清回头看了一眼林茗的方向♓,这一眼却另他更加疑惑起来🌙。
之间林茗面带认真以及思索🈴,时不时还有些惊喜的神情浮现在脸上🎐。
看起来🏣,并不像是随便瞎看的模样🌘,倒像是能看得懂的✡。
于是沈清又等了许久⛅,林茗翻了一半♉,便非常满意地合上了书㊙,手刚伸向下一本🏋,沈清这时便问道🏓:
“如何?可是能看懂?”
林茗抬头见沈清望着她🎪,便点头道♒:
“能看懂🐇,这应该不是很难吧?”
说完还观察了一下沈清的面部表情🌜,见对方面上没露出什么特别意外不可置信的神情之后🍸,林茗才放下心来👑。
这本书何止能看懂🍇,里面涉及的问题都是初中的知识点🎀,虽说有些名称不一样🏚,但看到案例例题🆕,林茗就立马知道了这本书大致的难度🎵。
用这个当教材正好✴,不需要学习一些不太常用的几何图形证明题等🏖,全是有关于数字类的知识⚡,利用率很高🈹,也比现代所学的知识实用性更加高一些🏸。
所以翻了一半她就知道后面不用看了🐈,这本书非常适合许炎几人🎷。
不过沈清问的话倒是让她有些防备👙,毕竟古人和她不一样⬜,她接受过现代高等教育🎠,无论是数学知识🎋,还是数学思维方式🃏,都明显要优势一些🎤。
如果这些书对沈清他们来说很难🎷,她却觉得很简单🐾,要是引起别人怀疑🌾,觉得她有问题怎么办?
于是她只说了能看懂🏅,而非很简单没有难度🐮。
不过见沈清没有意外的神色⛅,这书对于他们来说应该不是特别难吧?
林茗不知道的是👡,沈清虽然面上不显🐺,内心却极为惊异❤,这些书的难度他自然清楚🎺,原本一开始沈父见他花费了这么多时间再国文之外上♒,还想让他先放一放👤。
要不是他要学就要学到最好☔,这些书指不定已经被遗忘再尘埃里🎀,或者还给书肆了🎩。
见林茗已经看起了第二本🏄,沈清目光一凝🐗,便看到这本书依旧是那本比较难的🌸。
这次林茗翻得更加畅通无阻起来🏄,这让沈清有些怀疑对方是不是故意逗他玩的🈹,她真的有如此领悟力?
过了许久之后🏦,沈清没有再出声打断林茗🆓,当然心中的疑惑却越加深了起来🅾。
“啊呜”林茗放下手里最后一本书⛩,这才伸了个懒腰打了声呵欠❄。
觉得眼睛有些酸🐨,主要还是之前和沈清比瞪眼睛👏,废了些眼力🍬,要不然就这几本书🆖,还不至于让她觉得眼酸⬅。
“看完了?”
沈清斟酌着问道🏳。
林茗点头笑嘻嘻道🎰:
“嗯♟,看完了⛺,这些书内容还不错🌹,你借我几天行不?”
沈清却摇头道🐽:
“我之前说过🌎,我的书就是你的书🍗。”
林茗挑了挑眉道✊:
“那成🏇,那这几本“我的书”我拿走几天🏾,你没意见吧?”
她将主要知识点记下来🎦,按照前世的办法🍌,简化理解内容再交给许慎三人🏩,反正他们三个又不考科举🐠,只是用来培养能力🎈,调动脑补活力的🐬,应该不需要那么费事🎤。
这些书里的内容还都挺不错⛱,像一些用数的同类与异类阐述了通分🍏、约分🍙、四则运算🍿,以及繁分数化简等的运算法则🍁。
以及在开方术的注释中❗,从开方不尽的意义出发🎸,论述了无理方根的存在👃,并引进了新数🍟,创造了用十进分数无限逼近无理根的方法♏。
本章未完,点击下一页继续阅读