“妖皇太一有牛牧于扶桑⬆,其色四分👧,乃黑白棕黄➕,又有牡牝之别👧。以牝牛论数👫,白牝牛数为棕牝牛之数加黑牝牛半数🎟,又加黑牝牛数三分之一⏹。黑牝牛数🉐,则为黄牝牛数四分之一🎇,另加黄牝牛数五分之一🏁,再加棕牝牛之数🐇。黄牝牛数为白牝牛数六分之一⭕,另加白牝牛数七分之一🍕,再加棕牝牛之数🎫。再论牡牛数🎈,白牡牛数⛽,为黑牛之数三分之一🐍,另加黑牛之数四分之一👖。黑牡牛数👞,则为黄牛之数四分之一🎵,另加黄牛之数五分之一🏟。棕牡牛数⛳,则为白牛之数六分之一👲,另加白牛之数七分之一🐧。且问妖皇之牛🆕,为数几何?又有一问⛴,若黑白牡牛列阵恰为正矩❇,棕黄牡牛列阵可为三角🐮,又问🐳,黑白棕黄牡牝各有几何?”
芝龙缓缓报出问题之后🍿,略有得意的看着王崎🐪。他返现王崎脸上目瞪口呆的表情时🍟,反而有些担心了🌬。
他是很看好这个后辈的🌌,不仅是因为他等了五万年才等到一个如此合适的传承者🅱,更因为王崎拥有数家传承🌈、数学神戒🐉。
这就是缘🏁,妙不可言的缘🐢。
要是他答不出怎么办?要不要给予提示?
芝龙真人这样想的时候🍢,王崎却只感到荒诞🏕。
这是……千古谜题?
好吧🐊,这确实是一个难题🍷。阿基米德群牛问题❕,大数学家阿基米德研究了许久也未曾解开的难题❎。
但是🏕,再难的难题也一样是有时代限制的⚽。在微积分发明之前👕,测量不规则图形只能使用挖补法〰,麻烦无比又测不准🏹,但微积分出现之后这类世界难题就只是一般习题了⌚。再往更早的时候🏸,换元法没有诞生的时代🏃,二元方程组都是能让大数学家抓耳挠腮的难题🎼。地球上就曾经有一个数学家记恨另外一个数学家偷学方程组解法而到宗教裁判所诬陷对方为巫师🐒。
数学工具✡、求道之器的进步⛷,使得曾经的难题难度逐渐降低🍲。
小学奥数之所以能够难倒大学教师🅾,也是因为这类题目往往限定了数学工具🍝,不许用方程不许用微积分👌。硬是将一道简单题目弄成了难题🎩。
“这个问题最大的就是计算量吧……”王崎叹气🌄,直接报出答案🍴:“这一道题有无限解的🈳,第一问最小解5916837175686头🌇,第二问最小解光是位数就超过二十万六千五百多位🌇。用嘴报的话都得报几个小时的答案🐀。前辈👅,我们还是用写的吧……”
“不可能👌!这不可能🏫!”芝龙表情惊恐🎤,如同看到了世界上最不可思议之事🐣。
他是……他居然……他居然直接报出答案了?
“一定是这五万年里有人做出了这一题☝,你是硬记下的是不是?”芝龙找了个理由🐥,强自镇定🏐。可王崎觉得对方多少有些色厉内荏🍾。他在地上列出几道方程🏩:“好叫真人知道⤵。近古之时🍎,我万法门离宗又有突破🏎,得一新学👓,号‘天元式’🐍,取法上古算家初等代数学🌊,但更进一步……”
芝龙疑道🍄:“初等代数学?”
“即中古数家开发出的代数学🐶,有别于我万法门前辈一代一代开发的新代数学🍹,以初等称之👒。顺便一提👱,连宗也有吸收这方面的内容🉐。”王崎继续解释道🌒:“这里我们可以列出一个四元的天元组……”
芝龙觉得事情超出自己的预料了♒。他急忙叫停🌷:“等一下👦,连宗如何吸收离宗根本?”
代数与数论息息相关🏘。自然是离宗根本➕。
王崎只得解释🏰:“曾有前辈欲统一离宗连宗🏠,创一道🍢,号‘天位法’……”
所谓的天位法🏆,自然就是指天位功的基础⏬,解析几何🍱。
解析几何出现的年代很早🌽,芝龙理解起来并不困难🅿。可是➕,正是因为可以理解🏁,所以他心中震撼之感更甚🐗:“这……无双妙法🏦!这就是道啊🍋!这就是道🏠!”
看着芝龙真人手舞足蹈的样子🆔,王崎有些于心不忍了✳。他们之间的差距⤴,不是个人水平的差距⛄。而是文明发展的差距🎂。刨除近五万年的古法时期🎣,他们两个的差距就是两千年的数学发展史❌!
想要以一己之身硬撼万法门千年英才🈶,难难难👂!
转瞬之间⏫,王崎就列出了几个八元一次方程组👃。紧接着又列出正方形数和三角形数的算式🐚。解出两个二元二次方程组⏰。
“天位法是依照欧氏五律形成的🈚,要计算八元天元组得有八个两两垂直的数轴……”
芝龙快疯了🏸:“八个……怎么可能有八个两两垂直又交于一点的直线?”
“哦🐔,这就是欧氏太宇的一个扩展♏,名为‘相宇’🎮,普通空间只有上下🏩,左右⛳、前后三组方向🏁。是为三相🍆。而‘相宇’🎣,乃是有无限相的……”
“这有什么用?”
“额……就通常尺度来说👎,没什么卵用🐘,但是这是研究微观世界或者复杂系统所必须的……”
芝龙真人越是问🎞,神情就越是癫狂🍸。但当王崎解出这道问题的时候🍿,他已经平静下来了🍳。
这位中古大算家悠悠叹道👬:“后生可畏♓,后生可畏啊🏿!”
“长江……咳咳🐜,大江后浪推前浪⏫,一浪更比一浪强🆚。”王崎正色道🏳:“这是我家乡的一句俚语Ⓜ。”
芝龙真人哈哈大笑🆔:“好一个‘一浪更比一浪强’🌇!这句话好👘!够味🎌!”紧接着🍒,他目光灼灼的盯着王崎🍗:“我这里还有几个问题……不🆑,不是考你🍷。我知道➕,我已经考不了你了♐。我就是想知道这些问题后世是否有解🍉。”
王崎点点头🐭:“好的🐷。”
“纯以规矩作图法⛪,可否解得立方倍积🈳、化圆为方⬛、三等分角三题?”
规矩作图🏰,地球上又叫尺规作图🆚,单纯以圆规和没有刻度的矩尺画图的方法🍿。立方倍积🎒,即求作一立方体的边🌱,使该立方体的体积为给定立方体的两倍⏮;化圆为方⛄,即作一正方形🈯,使其与一给定的圆面积相等🎤;.三等分角👩、即分一个给定的任意角为三个相等的部分🉐。
王崎摇头道🏉:“都是不可能的🍅。首先🌞,化圆为方⏫,必回涉及一个数🐡,即圆周率🌡,圆周径之比⛔。而我们可以用算术方法证明⏱,圆周率是一个超越数——什么是超越数您等一下再问👒,总之我先说一点🆒,这个超越数是绝对不可能单纯用圆规矩尺做得……立方被积解释起来有点困难🐜。首先咱们得说几个概念🌚。这个概念源自于高相天元式的一般解法……这个问题可以转换为群论问题……”
迦罗瓦理论🐶,群论的重要理论之一✝。
真阐子比芝龙真人多听了大半年的课程🎏,但是接受能力反而不如这位中古算家🐛。他就是觉得这一幕有些荒诞👋。
说好的考验🏝,好像……变成授课了?
而且是被试炼者向试炼者授课?
这……太疯狂了啊❌!(未完待续👎。)
本章未完,点击下一页继续阅读